Chapter 13: Oscillatory Motion From Part Two of the Textbook Tuesday March 31st

- •Review: Simple Harmonic Motion (SHM)
- Review: Hooke's Law and SHM
- •Energy in SHM
- •The Simple Pendulum
- Damped Harmonic Motion
- •Examples, demonstrations and *i*clicker
- •If time at end (unlikely), one more solution to mid-term
- Final Mini Exam next week on Thursday (April 9)
- Will cover oscillations and waves (this week/next LONCAPA)

Reading: up to page 218 in Ch. 13

Review: Simple Harmonic Motion

- •The simplest possible form of harmonic motion is called Simple Harmonic Motion (SHM).
- •This term implies that the periodic motion is a sinusoidal (or cosine) function of time, Displacemnt

- •We can find the relationship between ω and T in the following way.
- •Since the motion repeats itself, $\omega(t+T) = \omega t + 2\pi \implies \omega T = 2\pi$

•A and ϕ determined by the initial conditions of the oscillation. •The frequency ω is independent of A and ϕ .

The velocity and acceleration of SHM
Velocity:
$$v(t) = \frac{dx(t)}{dt} = \frac{d}{dt} \Big[A\cos(\omega t + \phi) \Big]$$

 $v_{max} = \omega A$
 $v(t) = -\omega A\sin(\omega t + \phi) = -v_{max}\sin(\omega t + \phi)$
The positive quantity ωA is the maximum velocity v_{max} (amplitude of v)

Acceleration:
$$a(t) = \frac{dv(t)}{dt} = \frac{d}{dt} \left[-\omega A \sin(\omega t + \phi) \right]$$

 $a_{\text{max}} = \omega^2 A$ $a(t) = -\omega^2 A \cos(\omega t + \phi) = -a_{\text{max}} \cos(\omega t + \phi)$
 $a(t) = -\omega^2 x(t)$

In SHM, the acceleration is proportional to the displacement but opposite in sign; the two quantities are related by the square of the angular frequency

The velocity and acceleration of SHM

•Notice the $\pi/2$ phase shift between the velocity and the displacement.

•The acceleration is opposite in sign to the displacement.

•One can also relate them by a π phase shift.

The force law for SHM $F = ma = m(-\omega^2 x) = -(m\omega^2)x$

•Note: SHM occurs in situations where the force is proportional to the displacement, and the proportionality constant $(-m\omega^2)$ is negative, *i.e.*,

$$F = -kx$$

•This is very familiar - it is Hooke's law.

SHM is the motion executed by a particle of mass *m* subjected to a force that is proportional to the displacement of the particle but of opposite sign.

$$k = m\omega^{2}$$

$$k = m\omega^{2}$$

$$\int_{-x_{m}}^{k} \omega = \sqrt{\frac{k}{m}} \qquad T = 2\pi\sqrt{\frac{m}{k}}$$

Energy in SHM

$$U(t) = \frac{1}{2}kx^{2} = \frac{1}{2}kA^{2}\cos^{2}\left(\omega t + \phi\right)$$
$$K(t) = \frac{1}{2}mv^{2} = \frac{1}{2}m\omega^{2}A^{2}\sin^{2}\left(\omega t + \phi\right)$$

But $\omega^2 = \frac{k}{m}$

Thus,
$$K(t) = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$$

$$E = U + K$$

= $\frac{1}{2}kA^{2}\left[\cos^{2}\left(\omega t + \phi\right) + \sin^{2}\left(\omega t + \phi\right)\right]$
 $\cos^{2}\alpha + \sin^{2}\alpha = 1$
So: $E = U + K = \frac{1}{2}kA^{2} = \frac{1}{2}mv_{\text{max}}^{2}$

Simple Pendulum Torque about *P*: $\tau = -mgr_{\perp} = -mgL\sin\theta$ $= I\alpha = I\frac{d^2\theta}{dt^2}$ $\Rightarrow \frac{d^2\theta}{dt^2} = -\left(\frac{mgL}{I}\right)\sin\theta$ For small displacements, $\sin\theta \approx \theta$: $\frac{d^2\theta}{dt^2} \approx -\left(\frac{mgL}{I}\right)\theta$ M $\Rightarrow \theta(t) = \theta_{\max} \cos(\omega t + \phi)$ & $\omega = \sqrt{\frac{mgL}{I}} = \sqrt{\frac{g}{I}}$ $L\sin\theta$ mg

Damped Simple Harmonic Motion

Or

- •When the motion of an oscillator is reduced by an external force, the oscillator and its motion are said to be damped.
 - •Let us assume that the liquid in the figure (left) exerts a constant damping force that is proportional in magnitude to the velocity (like air resistance), and opposite in sign, *i.e.*, E = bu

$$F_d = -bv$$

• The force due to the spring is still -kx. Thus,

$$-bv - kx = ma$$

$$m\frac{d^2x}{dx^2} + b\frac{dx}{dt} + kx = 0$$

Damped Simple Harmonic Motion

- •When the motion of an oscillator is reduced by an external force, the oscillator and its motion are said to be damped.
 - •Let us assume that the liquid in the figure (left) exerts a constant damping force that is proportional in magnitude to the velocity (like air resistance), and opposite in sign.
 - •The solution to

$$m\frac{d^2x}{dx^2} + b\frac{dx}{dt} + kx = 0$$

$$x(t) = \mathrm{A}e^{-bt/2m}\cos(\omega' t + \phi)$$

where

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$

•If $(b^2/4m^2) \ll (k/m)$, *i.e.*, $b \ll (km)^{1/2}$, then $\omega' \approx \omega$

Then:

$$x(t) \approx Ae^{-\alpha t} \cos(\omega t + \phi)$$
 $[\alpha = b/2m]$

•If $(b^2/4m^2) \ll (k/m)$, *i.e.*, $b \ll (km)^{1/2}$, then $\omega' \approx \omega$

•The mechanical energy is then given by:

$$E(t) \approx \frac{1}{2}kA^2(e^{-\alpha t})^2 = \frac{1}{2}kA^2e^{-2\alpha t} = E_m e^{-2\alpha t}$$