# Chapter 13: Oscillatory Motion From Part Two of the Textbook Tuesday March 31 ${ }^{\text {st }}$ 

-Review: Simple Harmonic Motion (SHM)
-Review: Hooke's Law and SHM

- Energy in SHM
-The Simple Pendulum
- Damped Harmonic Motion
- Examples, demonstrations and iclicker
- If time at end (unlikely), one more solution to mid-term
- Final Mini Exam next week on Thursday (April 9)
- Will cover oscillations and waves (this week/next LONCAPA)

Reading: up to page 218 in Ch. 13

## Review: Simple Harmonic Motion

- The simplest possible form of harmonic motion is called Simple Harmonic Motion (SHM).
- This term implies that the periodic motion is a sinusoidal (or cosine) function of time,

Displacemnt
at time $t$


-We can find the relationship between $\omega$ and $T$ in the following way.

- Since the motion repeats itself, $\omega(t+T)=\omega t+2 \pi \quad \Rightarrow \omega T=2 \pi$

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

Phase Angular constant or phase angle

- A and $\phi$ determined by the initial conditions of the oscillation.
- The frequency $\omega$ is independent of A and $\phi$.


## The velocity and acceleration of SHM

Velocity:

$$
v(t)=\frac{d x(t)}{d t}=\frac{d}{d t}[\mathrm{~A} \cos (\omega t+\phi)]
$$

$$
v_{\max }=\omega \mathrm{A}
$$

$$
v(t)=-\omega \mathrm{A} \sin (\omega t+\phi)=-v_{\max } \sin (\omega t+\phi)
$$

- The positive quantity $\omega \mathrm{A}$ is the maximum velocity $v_{\max }$ (amplitude of $v$ )

Acceleration: $\quad a(t)=\frac{d v(t)}{d t}=\frac{d}{d t}[-\omega \mathrm{A} \sin (\omega t+\phi)]$

$$
\begin{aligned}
& a_{\max }=\omega^{2} \mathrm{~A} \quad a(t)=-\omega^{2} \mathrm{~A} \cos (\omega t+\phi)=-a_{\max } \cos (\omega t+\phi) \\
& a(t)=-\omega^{2} x(t)
\end{aligned}
$$

In SHM, the acceleration is proportional to the displacement but opposite in sign: the two quantities are related by the square of the angular frequency

## The velocity and acceleration of SHM



- Notice the $\pi / 2$ phase shift between the velocity and the displacement.
- The acceleration is opposite in sign to the displacement.
- One can also relate them by a $\pi$ phase shift.


## The force law for SHM $F=m a=m\left(-\omega^{2} x\right)=-\left(m \omega^{2}\right) x$

- Note: SHM occurs in situations where the force is proportional to the displacement, and the proportionality constant $\left(-m \omega^{2}\right)$ is negative, i.e.,

$$
F=-k x
$$

-This is very familiar - it is Hooke's law.
SHM is the motion executed by a particle of mass $m$ subjected to a force that is proportional to the displacement of the particle but of opposite sign.


$$
k=m \omega^{2}
$$

$$
\omega=\sqrt{\frac{k}{m}} \quad T=2 \pi \sqrt{\frac{m}{k}}
$$

## Energy in SHM



$$
U(t)=\frac{1}{2} k x^{2}=\frac{1}{2} k \mathrm{~A}^{2} \cos ^{2}(\omega t+\phi)
$$

$$
K(t)=\frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2} \sin ^{2}(\omega t+\phi)
$$

But

$$
\omega^{2}=\frac{k}{m}
$$

Thus, $\quad K(t)=\frac{1}{2} k \mathrm{~A}^{2} \sin ^{2}(\omega t+\phi)$

$E=U+K$

$$
=\frac{1}{2} k \mathrm{~A}^{2}\left[\cos ^{2}(\omega t+\phi)+\sin ^{2}(\omega t+\phi)\right]
$$

$$
\cos ^{2} \alpha+\sin ^{2} \alpha=1
$$

So: $\quad E=U+K=\frac{1}{2} k \mathrm{~A}^{2}=\frac{1}{2} m v_{\max }^{2}$

## Simple Pendulum

Torque about $P$ :

$$
\begin{gathered}
\tau=-m g r_{\perp}=-m g L \sin \theta \\
=I \alpha=I \frac{d^{2} \theta}{d t^{2}} \\
\Rightarrow \frac{d^{2} \theta}{d t^{2}}=-\left(\frac{m g L}{I}\right) \sin \theta
\end{gathered}
$$

For small displacements, $\sin \theta \approx \theta$ :

$$
\begin{aligned}
& \frac{d^{2} \theta}{d t^{2}} \approx-\left(\frac{m g L}{I}\right) \theta \\
& \Rightarrow \quad \theta(t)=\theta_{\max } \cos (\omega t+\phi) \\
& \& \quad \omega=\sqrt{\frac{m g L}{I}}=\sqrt{\frac{g}{L}}
\end{aligned}
$$



## Damped Simple Harmonic Motion

 by an external force, the oscillator and its motion are said to be damped.

- Let us assume that the liquid in the figure (left) exerts a constant damping force that is proportional in magnitude to the velocity (like air resistance), and opposite in sign, i.e.,

$$
F_{d}=-b v
$$

-The force due to the spring is still $-k x$. Thus,

$$
-b v-k x=m a
$$

Or

$$
m \frac{d^{2} x}{d x^{2}}+b \frac{d x}{d t}+k x=0
$$

## Damped Simple Harmonic Motion


is

$$
x(t)=\mathrm{A} e^{-b t / 2 m} \cos \left(\omega^{\prime} t+\phi\right)
$$

where

$$
\omega^{\prime}=\sqrt{\frac{k}{m}-\frac{b^{2}}{4 m^{2}}}
$$

## Damped Simple Harmonic Motion



- If $\left(b^{2} / 4 m^{2}\right) \ll(k / m)$, i.e., $b \ll(k m)^{1 / 2}$, then $\omega^{\prime} \approx \omega$

Then:

$$
x(t) \approx \mathrm{A} e^{-\alpha t} \cos (\omega t+\phi) \quad[\alpha=b / 2 m]
$$

## Damped Simple Harmonic Motion



- If $\left(b^{2} / 4 m^{2}\right) \ll(k / m)$, i.e., $b \ll(k m)^{1 / 2}$, then $\omega^{\prime} \approx \omega$
-The mechanical energy is then given by:

$$
E(t) \approx \frac{1}{2} k \mathrm{~A}^{2}\left(e^{-\alpha t}\right)^{2}=\frac{1}{2} k \mathrm{~A}^{2} e^{-2 \alpha t}=E_{m} e^{-2 \alpha t}
$$

